Output feedback model Predictive Control for nonlinear systems
نویسنده
چکیده
In this paper, an Output Feedback Model Predictive Control for nonlinear systems is presented. The proposed output feedback control consists of the well known robust controller NCGPC (Nonlinear Continuous Time Generalized Predictive Control) and an open loop observer (a simulated model in parallel) in order to estimate the output derivatives and a regulation filter used to account for plant/model mismatch. The main advantages of the new approach are i) that the assumption of full-state feedback inherent in feedback linearization schemes is eliminated, the only measurement required is the output and finally ii) the process output converges to a constant reference in spite of presence of parameter uncertainties and process disturbances. The analysis of the induction motor and simulation results in the numerical example show that the output feedback model predictive control proposed can tolerate certain process uncertainty. Key-Words: Nonlinear Control, Predictive Control, Output Feedback Control, Internal Model Control, Robust Control.
منابع مشابه
Real-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملA Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness
This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...
متن کامل